3.4.13 \(\int \frac {(e \cos (c+d x))^{9/2}}{(a+a \sin (c+d x))^{5/2}} \, dx\) [313]

Optimal. Leaf size=261 \[ \frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {21 e^{9/2} \sinh ^{-1}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}+\frac {21 e^{9/2} \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )} \]

[Out]

1/2*e*(e*cos(d*x+c))^(7/2)/a/d/(a+a*sin(d*x+c))^(3/2)+7/4*e^3*(e*cos(d*x+c))^(3/2)/a^2/d/(a+a*sin(d*x+c))^(1/2
)+21/4*e^(9/2)*arcsinh((e*cos(d*x+c))^(1/2)/e^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(a^3+a^3*co
s(d*x+c)+a^3*sin(d*x+c))+21/4*e^(9/2)*arctan(sin(d*x+c)*e^(1/2)/(e*cos(d*x+c))^(1/2)/(1+cos(d*x+c))^(1/2))*(1+
cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(a^3+a^3*cos(d*x+c)+a^3*sin(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2759, 2765, 2758, 2763, 2854, 209, 2912, 65, 221} \begin {gather*} \frac {21 e^{9/2} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \text {ArcTan}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{4 d \left (a^3 \sin (c+d x)+a^3 \cos (c+d x)+a^3\right )}+\frac {21 e^{9/2} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \sinh ^{-1}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{4 d \left (a^3 \sin (c+d x)+a^3 \cos (c+d x)+a^3\right )}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a \sin (c+d x)+a}}+\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a \sin (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(9/2)/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(e*(e*Cos[c + d*x])^(7/2))/(2*a*d*(a + a*Sin[c + d*x])^(3/2)) + (7*e^3*(e*Cos[c + d*x])^(3/2))/(4*a^2*d*Sqrt[a
 + a*Sin[c + d*x]]) + (21*e^(9/2)*ArcSinh[Sqrt[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[
c + d*x]])/(4*d*(a^3 + a^3*Cos[c + d*x] + a^3*Sin[c + d*x])) + (21*e^(9/2)*ArcTan[(Sqrt[e]*Sin[c + d*x])/(Sqrt
[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(4*d*(a^3 + a^3*Cos
[c + d*x] + a^3*Sin[c + d*x]))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 2758

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(a*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2759

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[2*g*(g
*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(2*m +
p + 1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2763

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[g*Sqrt[1
 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x])), Int[Sqrt[1 + Cos[e + f*x]]/
Sqrt[g*Cos[e + f*x]], x], x] - Dist[g*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(b + b*Cos[e + f*x] + a
*Sin[e + f*x])), Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f,
g}, x] && EqQ[a^2 - b^2, 0]

Rule 2765

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*b*((
g*Cos[e + f*x])^(p + 1)/(f*g*(2*p - 1)*(a + b*Sin[e + f*x])^(3/2))), x] + Dist[2*a*((p - 2)/(2*p - 1)), Int[(g
*Cos[e + f*x])^p/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[p
, 2] && IntegerQ[2*p]

Rule 2854

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*(b/f), Subst[Int[1/(b + d*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {(e \cos (c+d x))^{9/2}}{(a+a \sin (c+d x))^{5/2}} \, dx &=\frac {4 e (e \cos (c+d x))^{7/2}}{a d (a+a \sin (c+d x))^{3/2}}+\frac {\left (7 e^2\right ) \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx}{a^2}\\ &=\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {\left (7 e^2\right ) \int \frac {(e \cos (c+d x))^{5/2}}{(a+a \sin (c+d x))^{3/2}} \, dx}{4 a}\\ &=\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {\left (21 e^4\right ) \int \frac {\sqrt {e \cos (c+d x)}}{\sqrt {a+a \sin (c+d x)}} \, dx}{8 a^2}\\ &=\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {\left (21 e^5 \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\sqrt {1+\cos (c+d x)}}{\sqrt {e \cos (c+d x)}} \, dx}{8 a^2 (a+a \cos (c+d x)+a \sin (c+d x))}-\frac {\left (21 e^5 \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx}{8 a^2 (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {\left (21 e^5 \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {e x} \sqrt {1+x}} \, dx,x,\cos (c+d x)\right )}{8 a^2 d (a+a \cos (c+d x)+a \sin (c+d x))}-\frac {\left (21 e^5 \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1+e x^2} \, dx,x,-\frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right )}{4 a^2 d (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {21 e^{9/2} \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}+\frac {\left (21 e^4 \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{e}}} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{4 a^2 d (a+a \cos (c+d x)+a \sin (c+d x))}\\ &=\frac {e (e \cos (c+d x))^{7/2}}{2 a d (a+a \sin (c+d x))^{3/2}}+\frac {7 e^3 (e \cos (c+d x))^{3/2}}{4 a^2 d \sqrt {a+a \sin (c+d x)}}+\frac {21 e^{9/2} \sinh ^{-1}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}+\frac {21 e^{9/2} \tan ^{-1}\left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d \left (a^3+a^3 \cos (c+d x)+a^3 \sin (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.20, size = 80, normalized size = 0.31 \begin {gather*} -\frac {2 \sqrt [4]{2} (e \cos (c+d x))^{11/2} \, _2F_1\left (\frac {3}{4},\frac {11}{4};\frac {15}{4};\frac {1}{2} (1-\sin (c+d x))\right ) \sqrt {a (1+\sin (c+d x))}}{11 a^3 d e (1+\sin (c+d x))^{13/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(9/2)/(a + a*Sin[c + d*x])^(5/2),x]

[Out]

(-2*2^(1/4)*(e*Cos[c + d*x])^(11/2)*Hypergeometric2F1[3/4, 11/4, 15/4, (1 - Sin[c + d*x])/2]*Sqrt[a*(1 + Sin[c
 + d*x])])/(11*a^3*d*e*(1 + Sin[c + d*x])^(13/4))

________________________________________________________________________________________

Maple [A]
time = 0.24, size = 282, normalized size = 1.08

method result size
default \(\frac {\left (e \cos \left (d x +c \right )\right )^{\frac {9}{2}} \left (21 \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sin \left (d x +c \right )+21 \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+4 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-4 \left (\cos ^{3}\left (d x +c \right )\right )-22 \cos \left (d x +c \right ) \sin \left (d x +c \right )-18 \left (\cos ^{2}\left (d x +c \right )\right )+22 \cos \left (d x +c \right )\right )}{8 d \left (\left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+\cos ^{3}\left (d x +c \right )+2 \cos \left (d x +c \right ) \sin \left (d x +c \right )-3 \left (\cos ^{2}\left (d x +c \right )\right )-4 \sin \left (d x +c \right )-2 \cos \left (d x +c \right )+4\right ) \left (a \left (1+\sin \left (d x +c \right )\right )\right )^{\frac {5}{2}}}\) \(282\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*(e*cos(d*x+c))^(9/2)*(21*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*2^(1/2))*sin(d*x+c)+21*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)+4*cos(d*x+c)^2*sin(d*x+c)-4*cos(d*x+c)^3-22*cos
(d*x+c)*sin(d*x+c)-18*cos(d*x+c)^2+22*cos(d*x+c))/(cos(d*x+c)^2*sin(d*x+c)+cos(d*x+c)^3+2*cos(d*x+c)*sin(d*x+c
)-3*cos(d*x+c)^2-4*sin(d*x+c)-2*cos(d*x+c)+4)/(a*(1+sin(d*x+c)))^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

e^(9/2)*integrate(cos(d*x + c)^(9/2)/(a*sin(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 3456 vs. \(2 (206) = 412\).
time = 194.48, size = 3456, normalized size = 13.24 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/32*(84*(sqrt(2)*a^3*d*sin(d*x + c) + sqrt(2)*a^3*d)*(1/(a^10*d^4))^(1/4)*arctan(-1/4*(2*sqrt(1/2)*((sqrt(2)
*a^8*d^3*cos(d*x + c)^6 - 3*sqrt(2)*a^8*d^3*cos(d*x + c)^5 - 8*sqrt(2)*a^8*d^3*cos(d*x + c)^4 + 4*sqrt(2)*a^8*
d^3*cos(d*x + c)^3 + 8*sqrt(2)*a^8*d^3*cos(d*x + c)^2 - (sqrt(2)*a^8*d^3*cos(d*x + c)^5 + 4*sqrt(2)*a^8*d^3*co
s(d*x + c)^4 - 4*sqrt(2)*a^8*d^3*cos(d*x + c)^3 - 8*sqrt(2)*a^8*d^3*cos(d*x + c)^2)*sin(d*x + c))*(1/(a^10*d^4
))^(3/4)*e^(27/2) + (sqrt(2)*a^3*d*cos(d*x + c)^6*e^9 + 5*sqrt(2)*a^3*d*cos(d*x + c)^5*e^9 - 8*sqrt(2)*a^3*d*c
os(d*x + c)^4*e^9 - 20*sqrt(2)*a^3*d*cos(d*x + c)^3*e^9 + 8*sqrt(2)*a^3*d*cos(d*x + c)^2*e^9 + 16*sqrt(2)*a^3*
d*cos(d*x + c)*e^9 + (sqrt(2)*a^3*d*cos(d*x + c)^5*e^9 - 4*sqrt(2)*a^3*d*cos(d*x + c)^4*e^9 - 12*sqrt(2)*a^3*d
*cos(d*x + c)^3*e^9 + 8*sqrt(2)*a^3*d*cos(d*x + c)^2*e^9 + 16*sqrt(2)*a^3*d*cos(d*x + c)*e^9)*sin(d*x + c))*(1
/(a^10*d^4))^(1/4)*e^(9/2) - (cos(d*x + c)^4*e^(27/2) - 3*cos(d*x + c)^3*e^(27/2) - 8*cos(d*x + c)^2*e^(27/2)
+ (2*a^5*d^2*cos(d*x + c)^5*e^(9/2) - 5*a^5*d^2*cos(d*x + c)^4*e^(9/2) - 19*a^5*d^2*cos(d*x + c)^3*e^(9/2) + 2
0*a^5*d^2*cos(d*x + c)*e^(9/2) + 8*a^5*d^2*e^(9/2) - (2*a^5*d^2*cos(d*x + c)^4*e^(9/2) + 9*a^5*d^2*cos(d*x + c
)^3*e^(9/2) - 4*a^5*d^2*cos(d*x + c)^2*e^(9/2) - 20*a^5*d^2*cos(d*x + c)*e^(9/2) - 8*a^5*d^2*e^(9/2))*sin(d*x
+ c))*sqrt(1/(a^10*d^4))*e^9 + 4*cos(d*x + c)*e^(27/2) - (cos(d*x + c)^3*e^(27/2) + 4*cos(d*x + c)^2*e^(27/2)
- 4*cos(d*x + c)*e^(27/2) - 8*e^(27/2))*sin(d*x + c) + 8*e^(27/2))*sqrt(a*sin(d*x + c) + a)*sqrt(cos(d*x + c))
)*sqrt((2*a*cos(d*x + c)*e^27*sin(d*x + c) + 2*a*cos(d*x + c)*e^27 + (a^6*d^2*e^18*sin(d*x + c) + a^6*d^2*e^18
)*sqrt(1/(a^10*d^4))*e^9 + (sqrt(2)*a^3*d*(1/(a^10*d^4))^(1/4)*cos(d*x + c)*e^27 + (sqrt(2)*a^8*d^3*e^(27/2)*s
in(d*x + c) + sqrt(2)*a^8*d^3*e^(27/2))*(1/(a^10*d^4))^(3/4)*e^(27/2))*sqrt(a*sin(d*x + c) + a)*sqrt(cos(d*x +
 c)))/(sin(d*x + c) + 1)) + ((2*sqrt(2)*a^8*d^3*cos(d*x + c)^5*e^(27/2) + sqrt(2)*a^8*d^3*cos(d*x + c)^4*e^(27
/2) - 13*sqrt(2)*a^8*d^3*cos(d*x + c)^3*e^(27/2) - 8*sqrt(2)*a^8*d^3*cos(d*x + c)^2*e^(27/2) + 12*sqrt(2)*a^8*
d^3*cos(d*x + c)*e^(27/2) + 8*sqrt(2)*a^8*d^3*e^(27/2) - (7*sqrt(2)*a^8*d^3*cos(d*x + c)^3*e^(27/2) + 4*sqrt(2
)*a^8*d^3*cos(d*x + c)^2*e^(27/2) - 12*sqrt(2)*a^8*d^3*cos(d*x + c)*e^(27/2) - 8*sqrt(2)*a^8*d^3*e^(27/2))*sin
(d*x + c))*(1/(a^10*d^4))^(3/4)*e^(27/2) + (7*sqrt(2)*a^3*d*cos(d*x + c)^4*e^(45/2) + 3*sqrt(2)*a^3*d*cos(d*x
+ c)^3*e^(45/2) - 16*sqrt(2)*a^3*d*cos(d*x + c)^2*e^(45/2) - 4*sqrt(2)*a^3*d*cos(d*x + c)*e^(45/2) + 8*sqrt(2)
*a^3*d*e^(45/2) + (2*sqrt(2)*a^3*d*cos(d*x + c)^4*e^(45/2) + sqrt(2)*a^3*d*cos(d*x + c)^3*e^(45/2) - 12*sqrt(2
)*a^3*d*cos(d*x + c)^2*e^(45/2) - 4*sqrt(2)*a^3*d*cos(d*x + c)*e^(45/2) + 8*sqrt(2)*a^3*d*e^(45/2))*sin(d*x +
c))*(1/(a^10*d^4))^(1/4)*e^(9/2))*sqrt(a*sin(d*x + c) + a)*sqrt(cos(d*x + c)))/(a*cos(d*x + c)^6*e^27 + a*cos(
d*x + c)^5*e^27 - 8*a*cos(d*x + c)^4*e^27 - 8*a*cos(d*x + c)^3*e^27 + 8*a*cos(d*x + c)^2*e^27 + 8*a*cos(d*x +
c)*e^27 - 4*(a*cos(d*x + c)^4*e^27 + a*cos(d*x + c)^3*e^27 - 2*a*cos(d*x + c)^2*e^27 - 2*a*cos(d*x + c)*e^27)*
sin(d*x + c)))*e^(9/2) - 84*(sqrt(2)*a^3*d*sin(d*x + c) + sqrt(2)*a^3*d)*(1/(a^10*d^4))^(1/4)*arctan(1/4*(2*sq
rt(1/2)*((sqrt(2)*a^8*d^3*cos(d*x + c)^6 - 3*sqrt(2)*a^8*d^3*cos(d*x + c)^5 - 8*sqrt(2)*a^8*d^3*cos(d*x + c)^4
 + 4*sqrt(2)*a^8*d^3*cos(d*x + c)^3 + 8*sqrt(2)*a^8*d^3*cos(d*x + c)^2 - (sqrt(2)*a^8*d^3*cos(d*x + c)^5 + 4*s
qrt(2)*a^8*d^3*cos(d*x + c)^4 - 4*sqrt(2)*a^8*d^3*cos(d*x + c)^3 - 8*sqrt(2)*a^8*d^3*cos(d*x + c)^2)*sin(d*x +
 c))*(1/(a^10*d^4))^(3/4)*e^(27/2) + (sqrt(2)*a^3*d*cos(d*x + c)^6*e^9 + 5*sqrt(2)*a^3*d*cos(d*x + c)^5*e^9 -
8*sqrt(2)*a^3*d*cos(d*x + c)^4*e^9 - 20*sqrt(2)*a^3*d*cos(d*x + c)^3*e^9 + 8*sqrt(2)*a^3*d*cos(d*x + c)^2*e^9
+ 16*sqrt(2)*a^3*d*cos(d*x + c)*e^9 + (sqrt(2)*a^3*d*cos(d*x + c)^5*e^9 - 4*sqrt(2)*a^3*d*cos(d*x + c)^4*e^9 -
 12*sqrt(2)*a^3*d*cos(d*x + c)^3*e^9 + 8*sqrt(2)*a^3*d*cos(d*x + c)^2*e^9 + 16*sqrt(2)*a^3*d*cos(d*x + c)*e^9)
*sin(d*x + c))*(1/(a^10*d^4))^(1/4)*e^(9/2) + (cos(d*x + c)^4*e^(27/2) - 3*cos(d*x + c)^3*e^(27/2) - 8*cos(d*x
 + c)^2*e^(27/2) + (2*a^5*d^2*cos(d*x + c)^5*e^(9/2) - 5*a^5*d^2*cos(d*x + c)^4*e^(9/2) - 19*a^5*d^2*cos(d*x +
 c)^3*e^(9/2) + 20*a^5*d^2*cos(d*x + c)*e^(9/2) + 8*a^5*d^2*e^(9/2) - (2*a^5*d^2*cos(d*x + c)^4*e^(9/2) + 9*a^
5*d^2*cos(d*x + c)^3*e^(9/2) - 4*a^5*d^2*cos(d*x + c)^2*e^(9/2) - 20*a^5*d^2*cos(d*x + c)*e^(9/2) - 8*a^5*d^2*
e^(9/2))*sin(d*x + c))*sqrt(1/(a^10*d^4))*e^9 + 4*cos(d*x + c)*e^(27/2) - (cos(d*x + c)^3*e^(27/2) + 4*cos(d*x
 + c)^2*e^(27/2) - 4*cos(d*x + c)*e^(27/2) - 8*e^(27/2))*sin(d*x + c) + 8*e^(27/2))*sqrt(a*sin(d*x + c) + a)*s
qrt(cos(d*x + c)))*sqrt((2*a*cos(d*x + c)*e^27*sin(d*x + c) + 2*a*cos(d*x + c)*e^27 + (a^6*d^2*e^18*sin(d*x +
c) + a^6*d^2*e^18)*sqrt(1/(a^10*d^4))*e^9 - (sqrt(2)*a^3*d*(1/(a^10*d^4))^(1/4)*cos(d*x + c)*e^27 + (sqrt(2)*a
^8*d^3*e^(27/2)*sin(d*x + c) + sqrt(2)*a^8*d^3*e^(27/2))*(1/(a^10*d^4))^(3/4)*e^(27/2))*sqrt(a*sin(d*x + c) +
a)*sqrt(cos(d*x + c)))/(sin(d*x + c) + 1)) + ((...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(9/2)/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(9/2)/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{9/2}}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^(9/2)/(a + a*sin(c + d*x))^(5/2),x)

[Out]

int((e*cos(c + d*x))^(9/2)/(a + a*sin(c + d*x))^(5/2), x)

________________________________________________________________________________________